

All Products and Services

MicroTorr: Ambient In-Line Purifiers

MicroTorr Purifiers can be tailored to many different customer applications, by combining the model size with a selection of gas-specific purification materials. Optional features include an ultrafine 0.003µm particle filter, inlet/outlet valves, bypass assemblies or custom manifold assemblies.

Model	MC1	MC50	MC190/ MC200	MC400/ MC450	MC500	MC1500	MC3000	MC4500	MC9000	MC14K
Max Flow (slpm)	5	10	50	60	100	250	500	1,000	1,000	2,000
Avg Flow	0.5	1.5	5	9	12	40	80	200	300	400

Common Gases	Media	All Gases Purified	Impurities Removed
N ₂ Ar, He, Kr, Ne, Xe	902	N_2 , Ar, He, Kr, Ne, Xe, CH_4 , C_2H_6 , C_3H_8 , SF_6 , Fluorocarbons	H ₂ O, H ₂ , CO ₂ , O ₂ , CO to < 100 ppt; Organics, Acids, Refractory Compounds to < 1 ppt; Bases < 5 ppt, Metals < 1 ppbV
H ₂	904	H ₂ , D ₂ , H ₂ /Inert Mixtures	H ₂ O, CO ₂ , O ₂ , CO to < 100 ppt; Organics, Acids, Refractory Compounds to < 1 ppt; Bases < 5 ppt, Metals < 1 ppbV
O ₂ CDA	203	$\mathrm{N_2}$, Ar, He, Kr, Ne, Xe, $\mathrm{H_2}$, $\mathrm{D_2}$, CDA, $\mathrm{O_2}$, $\mathrm{N_2O}$	H_2 O, CO_2 to < 100 ppt; Organics, Acids, Refractory Compounds to < 1 ppt; Bases < 5 ppt, Metals < 1 ppb
NH ₃	702	$\begin{array}{c} \mathrm{NH_3,C_2H_7N,C_2H_8N_2,C_2H_4,C_3H_6,CH_3SiH_3,GeH_4,SF_6,H_2/} \\ \mathrm{SiH_4\ mixtures} \end{array}$	H ₂ O, O ₂ , CO ₂ , NMHCs, Metals to < 1 ppb
CO ₂	804	CO_2	H_2O , H_2 , O_2 , CO to < 100 ppt; Organics, Acids, Refractory Compounds to < 1 ppt; Bases < 5 ppt, Metals < 1 ppbV
Corrosive Gases	302	HCI, Cl ₂ , B ₂ H ₆ , BCl ₃ , CCIH ₃ , CO ₂ , GeCl ₄ , GeH ₄ , H ₂ S, H ₂ Se, HBr, N ₂ O, NF ₃ , NO, SiCl ₄ , SiF ₄ , SiH ₂ Cl ₂ , SiHCl ₃ , SO ₂ , CHCIF ₂ , BF ₃ , N ₂ O, NF ₃ , NO, SiCl ₄ , SiF ₄ , SiH ₂ Cl ₂ , SiHCl ₃ , SO ₂	H ₂ O, Metals to < 1 ppb

Palladium Hydrogen Purifiers

SAES Pure Gas Palladium Hydrogen Purifiers produce the purest hydrogen on the planet. Only hydrogen is able to pass through the palladium membrane, while all other impurities travel out the bleed line. This patented micro-channel palladium membrane technology removes all impurities to below part-per-billion (ppb) levels.

Palladium Advantages

- Ultra pure hydrogen from various sources
- High flow capacity up to 2,170 slpm
- <1 ppb H₂O, O₂, CO₂, CO, N₂, THC, He, Ar
- Patented Micro-Channel Palladium technology
- No regeneration or vessel replacement
- Easy to verify performance with Helium leak check

MonoTorr: Point-of-Use Heated Getter Purifiers

SAES Pure Gas MonoTorr heated getter purifiers are ideal solutions for point-of-use purification where CH₄ or N₂ removal is required.

Getter technology allows irreversible chemical absorption of impurities to sub-ppb levels. Five different sizes are available for flow rates from 1 sccm to 150 slpm.

Gas	Helium / Argon	Nitrogen	Hydrogen		
Impurities Removed	H ₂ O, O ₂ , CO, CO ₂ , H ₂ , N ₂ , THC	H ₂ O, O ₂ , CO, CO ₂ , H ₂ , THC	H ₂ O, O ₂ , CO, CO ₂ , N ₂		
Flow rates	0 - 100 slpm	0 - 100 slpm	0 - 150 slpm		

MegaTorr: Bulk Gas Purifiers

SAES Pure Gas offers an entire line of bulk gas purifiers designed for complete facility-level purification.

Gas	Nitrogen/ Hydrogen	Nitrogen	Hydrogen	Hydrogen	Ammonia	CDA	Helium / Argon	Oxygen	Carbon Dioxide
Model	PS8 / PS7-A	PS9	PS7-H	PS7-PD	PS21	PS22	PS5	PS6	PS31 / PS32 / PS33
Media	Adsorber	Catalyst and Adsorber	Adsorber and Getter	Palladium	Adsorber	Adsorber	Getter	Catalyst and Adsorber	Catalyst and Adsorber
Impurities Removed	H ₂ O, O ₂ , CO, CO ₂ , H ₂	H ₂ O, O ₂ , CO, CO ₂ , H ₂ , CH ₄	H ₂ O, O ₂ , CO, CO ₂ , CH ₄ , N ₂	H_2O , O_2 , CO , CO_2 , CH_4 , N_2 , Inert Gases	H ₂ O, O ₂ , CO ₂ , NMHC	H ₂ O, CO ₂ , Acids, Bases, Organics, Refractory Compounds	$\begin{array}{c} {\rm H_2O,O_2,} \\ {\rm CO,CO_2,H_2,} \\ {\rm CH_4,N_2} \end{array}$	H ₂ O, CO, CO ₂ , H ₂ , CH ₄	H ₂ O, O ₂ , CO, H ₂ , CH ₄ , Acids, Bases, Organics, Refractory Compounds
Flowrates	0 - 24,000 Nm³/hr	0 - 12,000 Nm³/hr	0 - 200 Nm³/hr	0 - 140 Nm³/hr	0 - 100 Nm³/hr	0 - 24,000 Nm³/hr	0 - 200 Nm³/hr	0 - 3,000 Nm³/hr	0 - 3,000 Nm³/hr

CollectTorr: AMC Sampling Service

The AMC Sampling Service from SAES Pure Gas is an economical way to determine molecular contamination in Nitrogen, Carbon Dioxide, CDA or Cleanroom Air.

Detection limits are low Part-Per-Trillion (pptV) for Acids, Bases, Organics, or Refractory Compounds.

Two versions are available:

- Pressurized Gases
- · Ambient Air / Cleanroom Air

4175 Santa Fe Road

San Luis Obispo, CA, 93401, USA
Phone: +1 805-541-9299
E-mail: spg@saes-group.com
Website: www.saespuregas.com

SAES Pure Gas is ISO9001 certified

ISO 9001:2008

© 2016 SAES Pure Gas. Printed in USA. All rights reserved. SAES Pure Gas reserves the right to change or modify product specifications at any time without notice.